
Generating Big Data

Tilmann Rabl – msrg.org / U of T

Motivation

2

 What makes a benchmark successful?

 Central factor

 Easy to use

 Good / complete tool chain

 Good examples:

 TPC-H, YCSB

Benchmarking Tool Chain

3

 Data generator

 Workload generator

 Driver

 Metric computation

Data

Generator

Query

Generator

Driver
Metric

Computation
SUT

Ways to Generate Data

 Application specific
 Implementation overhead

 Limited adaptability

 Fast outdated

 Client simulation
 Graph based

 Very accurate (complex dependencies)

 Slow

 Limited repeatability

 Statistical distributions
 Based on probability

 Fast

 Repeatable

 Simple data

4

What Do We Need?

5

 Big data

 Terabytes, Petabytes, Exabytes

And

 Complex data

 User history, click streams

 Useful information

 In different stages (end-to-end)

ETnL

Click Stream

User Profile

Sensor Data

Graph Data

Data Warehouse

Filtered/Aggregated/... Data Raw Data

Log

Data Example

(Quickly made up last night)

6

 Users have names and email addresses and user data

 Messages connect two users

 Both have to exist

 Social graph

 Includes all connections of two users (directed or undirected)

Messages

From

To

Text

User

Name

Email

User Data

Social Graph

Sender

Receiver

Deterministic Data Generation

 Hierarchical seeding strategy

 Schema Table Column Update Row Generator

 Uses deterministic seeds

 Guarantees that n-th random number determines n-th value

 Even for large schemas all seeds can be cached

 Repeatable, parallel, deterministic generation

7

Parallel Data Generation Framework

(PDGF) is

8

 Generic

 Can generate any schema

 Configurable

 XML configuration files for schema and output format

 Extensible

 Plug-in mechanism for

 Distributions

 Specialized data generation formats

 Efficient

 Utilizes all system resources to a maximum degree (if desired)

 Scalable

 Parallel generation for modern multi-core SMPs and clustered
systems

Architecture (PDGF)

9

 To generate data the user defines:

 Schema XML file

 Defines relational schema

 Generation XML file

 Defines output format (CSV, XML, merging tables)

Schema XML File

10

 Configures PDGF for the schema

 Corresponds to ER of logical
DBMS, i.e. tables, columns

 Defines content of columns (Field
value generators)

 Defines table and column
references

 Defines update properties

Generation XML File

11

 Defines the output

 Scheduling

 Data format

 Sorting

 File name and location

 Post processing

 Filtering of values

 Merging of tables

 Splitting of tables

 Templates (e.g. XML)

Implemented Data Generators

12

 SetQuery (The Set Query Benchmark by Patrick E. O'Neil)

 Single table, 21 columns

 250 lines in schema and generation XML files

 TPC TC’10

 TPC-H (Data Warehouse Benchmark by TPC)

 8 tables, 61 columns

 500 lines in schema and generation XML files

 TPC TC’11

 TPC-DI (ETL Benchmark by TPC)

 20 tables, more than 200 columns

 6000 lines in schema and generation XML files

 In progress

 More to come…

Evaluation

13

 TPC-ETL excerpt

 Trade table

 Historic data

 2 change data captures

 SF 1,000,000 = 18 GB

 Test system

 SMP server, 4 x X5670 Intel Xeon CPUs (2.93 GHz, 12

MB cache, 6 cores), 140 GB RAM, 24 cores total

 All writes to /dev/null

Scaling the System Size

14

 18 GB produced data

 Almost linear speed up for 8 threads

 Decreasing speed for more threads than cores

Legend:

Solid Line – Generation Time

Dotted Line – Throughput

Scaling the Problem Size

15

 24 core system, 32 threads

 Generation of 18 – 72 gigabytes

 Constant throughput

 Linear generation time

Legend:

Solid Line – Generation Time

Dotted Line – Throughput

Summary

 Requirements of big data generation
 Large data, large systems, complex data

 Parallel Data Generation Framework
 Fast, parallel, generic data generation

 Support for complex inter value dependencies

 Support for different data stages

 Current work
 TPC-ETL, SSB

 Query workload

 Your benchmark?

16

Thank You!

 More info and download soon at

 www.paralleldatageneration.org

17

Backup Slides

18

Scaling the System Size II

19

 SPARC T3-4, 4 x T3 CPUs (1.65 GHz, 6 MB cache 16
cores), 8 hardware threads per core, 512 GB RAM, 512
virtual processors

 1.8 GB produced data

 Linear speed up for 32 threads

 Decreasing speed for more threads than cores

Data Generation in PDGF

 Data generation is done in so called Field Value

Generators

 Field Value Generators are functions

 Domain: random values

 Co-domain: data domain

 Built-in Field Value Generators can be extended with plugins

 Based on pseudo random number generators

 Deterministic data generation

 Sample built-in Field Value Generators

 Dictionary: Random number modulo DictionaryRowCount

 Number: Random number modulo (range + offset)

20

Architecture PDGF

21

 Controller Initialization

 Meta Scheduler Inter node scheduling

 Scheduler Inter thread scheduling

 Worker Blockwise data generation

 Update Black Box Co-ordination of data updates

 Seeding System Random sequence adaption

 Generators Value generation

 Output system Data formating

Random Number Generation

 Pseudo random numbers (xorshift)

 Fast

 Repeatable

 Parallel random number generation

 Fast random numbers

 Random hash

 rng(n) = prng(seed+n)

22

Bijective Permutation

 Pseudo random numbers are not
sufficient to generate all types of
complex data

 Bijective permutation
 Allows sampling without replacement

 Choosing a unique key from a set of
keys

 Necessary for

 Random unique values

 Random subsets (e.g. account
managers)

 Static size

23

Growing Permutation

 Growing permutation with offsets
 Abstract time (generation / update ID)

 Bijective permutation per generation

 In each generation
 Adding of values

 Removing of values

 Changing of values

 Growing, shrinking or

 static number of values

24

ID

