
Generating Big Data

Tilmann Rabl – msrg.org / U of T

Motivation

2

 What makes a benchmark successful?

 Central factor

 Easy to use

 Good / complete tool chain

 Good examples:

 TPC-H, YCSB

Benchmarking Tool Chain

3

 Data generator

 Workload generator

 Driver

 Metric computation

Data

Generator

Query

Generator

Driver
Metric

Computation
SUT

Ways to Generate Data

 Application specific
 Implementation overhead

 Limited adaptability

 Fast outdated

 Client simulation
 Graph based

 Very accurate (complex dependencies)

 Slow

 Limited repeatability

 Statistical distributions
 Based on probability

 Fast

 Repeatable

 Simple data

4

What Do We Need?

5

 Big data

 Terabytes, Petabytes, Exabytes

And

 Complex data

 User history, click streams

 Useful information

 In different stages (end-to-end)

ETnL

Click Stream

User Profile

Sensor Data

Graph Data

Data Warehouse

Filtered/Aggregated/... Data Raw Data

Log

Data Example

(Quickly made up last night)

6

 Users have names and email addresses and user data

 Messages connect two users

 Both have to exist

 Social graph

 Includes all connections of two users (directed or undirected)

Messages

From

To

Text

User

Name

Email

User Data

Social Graph

Sender

Receiver

Deterministic Data Generation

 Hierarchical seeding strategy

 Schema  Table  Column  Update Row  Generator

 Uses deterministic seeds

 Guarantees that n-th random number determines n-th value

 Even for large schemas all seeds can be cached

 Repeatable, parallel, deterministic generation

7

Parallel Data Generation Framework

(PDGF) is

8

 Generic

 Can generate any schema

 Configurable

 XML configuration files for schema and output format

 Extensible

 Plug-in mechanism for

 Distributions

 Specialized data generation formats

 Efficient

 Utilizes all system resources to a maximum degree (if desired)

 Scalable

 Parallel generation for modern multi-core SMPs and clustered
systems

Architecture (PDGF)

9

 To generate data the user defines:

 Schema XML file

 Defines relational schema

 Generation XML file

 Defines output format (CSV, XML, merging tables)

Schema XML File

10

 Configures PDGF for the schema

 Corresponds to ER of logical
DBMS, i.e. tables, columns

 Defines content of columns (Field
value generators)

 Defines table and column
references

 Defines update properties

Generation XML File

11

 Defines the output

 Scheduling

 Data format

 Sorting

 File name and location

 Post processing

 Filtering of values

 Merging of tables

 Splitting of tables

 Templates (e.g. XML)

Implemented Data Generators

12

 SetQuery (The Set Query Benchmark by Patrick E. O'Neil)

 Single table, 21 columns

 250 lines in schema and generation XML files

 TPC TC’10

 TPC-H (Data Warehouse Benchmark by TPC)

 8 tables, 61 columns

 500 lines in schema and generation XML files

 TPC TC’11

 TPC-DI (ETL Benchmark by TPC)

 20 tables, more than 200 columns

 6000 lines in schema and generation XML files

 In progress

 More to come…

Evaluation

13

 TPC-ETL excerpt

 Trade table

 Historic data

 2 change data captures

 SF 1,000,000 = 18 GB

 Test system

 SMP server, 4 x X5670 Intel Xeon CPUs (2.93 GHz, 12

MB cache, 6 cores), 140 GB RAM, 24 cores total

 All writes to /dev/null

Scaling the System Size

14

 18 GB produced data

 Almost linear speed up for 8 threads

 Decreasing speed for more threads than cores

Legend:

Solid Line – Generation Time

Dotted Line – Throughput

Scaling the Problem Size

15

 24 core system, 32 threads

 Generation of 18 – 72 gigabytes

 Constant throughput

 Linear generation time

Legend:

Solid Line – Generation Time

Dotted Line – Throughput

Summary

 Requirements of big data generation
 Large data, large systems, complex data

 Parallel Data Generation Framework
 Fast, parallel, generic data generation

 Support for complex inter value dependencies

 Support for different data stages

 Current work
 TPC-ETL, SSB

 Query workload

 Your benchmark?

16

Thank You!

 More info and download soon at

 www.paralleldatageneration.org

17

Backup Slides

18

Scaling the System Size II

19

 SPARC T3-4, 4 x T3 CPUs (1.65 GHz, 6 MB cache 16
cores), 8 hardware threads per core, 512 GB RAM, 512
virtual processors

 1.8 GB produced data

 Linear speed up for 32 threads

 Decreasing speed for more threads than cores

Data Generation in PDGF

 Data generation is done in so called Field Value

Generators

 Field Value Generators are functions

 Domain: random values

 Co-domain: data domain

 Built-in Field Value Generators can be extended with plugins

 Based on pseudo random number generators

 Deterministic data generation

 Sample built-in Field Value Generators

 Dictionary: Random number modulo DictionaryRowCount

 Number: Random number modulo (range + offset)

20

Architecture PDGF

21

 Controller  Initialization

 Meta Scheduler  Inter node scheduling

 Scheduler  Inter thread scheduling

 Worker  Blockwise data generation

 Update Black Box  Co-ordination of data updates

 Seeding System  Random sequence adaption

 Generators  Value generation

 Output system  Data formating

Random Number Generation

 Pseudo random numbers (xorshift)

 Fast

 Repeatable

 Parallel random number generation

 Fast random numbers

 Random hash

 rng(n) = prng(seed+n)

22

Bijective Permutation

 Pseudo random numbers are not
sufficient to generate all types of
complex data

 Bijective permutation
 Allows sampling without replacement

 Choosing a unique key from a set of
keys

 Necessary for

 Random unique values

 Random subsets (e.g. account
managers)

 Static size

23

Growing Permutation

 Growing permutation with offsets
 Abstract time (generation / update ID)

 Bijective permutation per generation

 In each generation
 Adding of values

 Removing of values

 Changing of values

 Growing, shrinking or

 static number of values

24

ID

